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Abstract

A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appear-
ing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential
equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin
approach avoids the need for mixed finite element methods, coupled equations or interpolation functions with a high
degree of continuity that have been employed in the literature to treat the fourth-order spatial derivatives. The variational
formulation of the discontinuous Galerkin method, its implementation and numerical examples are presented. In this com-
munication, it is also shown under what conditions the method is stable, and an error estimate in an energy-type norm is
presented. The method is evaluated by comparison with a standard finite element treatment in which the Cahn–Hilliard
equation is decomposed into two coupled partial differential equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Originally derived for phase segregation of a binary alloy system, the Cahn–Hilliard equation [1] has been
applied to a wide range of problems, including multiphase fluid flow [2,3], image processing [4] and planet for-
mation [5]. Additionally, viewing a single-species solid as a binary atom-vacancy mixture, the formation of
void lattices has been modelled as a process of vacancy segregation by the Cahn–Hilliard treatment coupled
with elastic effects [6]. These are just a few representative examples of a vast body of literature on applications
of the Cahn–Hilliard equation.
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Numerical solution techniques for the Cahn–Hilliard equation have spanned finite difference methods,
spectral formulations and finite element methods. In this paper, the focus is on finite element methods. Pre-
vious finite element formulations have focused on the case wherein the Cahn–Hilliard equation has been
rewritten as a coupled system of two partial differential equations (see for example [7–11]). In Bansch et al.
[12] surface diffusion is treated by decomposing the governing fourth-order equation into a system of four par-
tial differential equations, of which two are second-order and the remaining are zeroth-order. Also of interest
is Ubachs et al. [13], where the concentration gradient-dependent free-energy, which forms the basis of the
Cahn–Hilliard model, is replaced with a nonlocal free-energy. The resulting problem consists of two coupled
second-order partial equations, which are solved using the standard Galerkin finite element method. In con-
trast stand the works of Elliott and Zheng [14], in which a conforming C1 finite element method was examined,
and Elliott and French [15], who used a non-conforming finite element method, inspired by mixed methods for
thin plate problems.

The decomposition of the Cahn–Hilliard equation into two second-order partial differential equations fol-
lows the classical approach for the treatment of high-order differential equations using mixed finite element
methods (see [16] for an overview). It avoids difficulties with the representation of high-order derivatives
across element boundaries. Specifically, C0 interpolations can be applied. Here, an alternate approach is fol-
lowed in which a discontinuous Galerkin formulation is proposed which avoids the need for C1 basis functions
and allows the use of standard C0 finite element shape functions. The standard weak form of the Cahn–
Hilliard equation contains spatial derivatives up to and including order two in both the trial and weighting
functions. A naive implementation with standard C0 interpolations leads to terms involving the multiplication
of Dirac-Delta functions on inter-element edges. Such terms are meaningless, even in a distributional sense.
Instead of grappling with these difficulties, we aim to lay down a weak form that allows, at the outset, for fields
in which the first derivative is discontinuous across element boundaries, but is consistent with the governing
Cahn–Hilliard equation. This is achieved by the definition of suitable flux terms involving the normal deriv-
atives across element boundaries in the weak form.

The proposed approach for the Cahn–Hilliard equation is inspired by works on discontinuous Galerkin
methods for second-order elliptic equations, known as the ‘interior penalty method’, early examples of which
can be found in [17–20]. These methods were developed largely separate from discontinuous Galerkin methods
for first-order hyperbolic equations and discontinuous Galerkin methods in time. While discontinuous Galer-
kin methods for advection problems became well-accepted and proved to be effective, work on discontinuous
Galerkin methods for elliptic problems was largely dormant. A wish to treat advective and diffusive terms
using the same basis functions lead to a recent resurgence in interest for discontinuous Galerkin methods
for elliptic problems. Overviews of works on discontinuous Galerkin methods for elliptic problems and exten-
sive literature surveys can be found in Arnold et al. [21] and Engel et al. [22]. The approach followed here is a
natural extension of recent work on discontinuous Galerkin formulations for fourth-order elliptic problems in
structural mechanics (thin beam and plate theories) and strain gradient elasticity [22], and strain gradient dam-
age [23,24].

The organisation of the paper is as follows: The Cahn–Hilliard equation is introduced in Section 2 and dis-
continuous and mixed Galerkin formulations are presented in Section 3. The numerical implementation of the
discontinuous Galerkin formulation is discussed in Section 4, along with a conventional mixed finite element
formulation. Numerical examples are solved in Section 5 to compare the discontinuous Galerkin and conven-
tional formulations. Conclusions and a discussion in Section 6 complete the paper.

2. The strong form of the Cahn–Hilliard equation

Consider a binary mixture and let the concentration of one of its constituents, say A, be denoted by c sat-
isfying 0 < c < 1. The composition of the other constituent, B, is 1 � c. Pure phases are obtained for c = 0 and
c = 1. Let the mixture occupy an open, simply connected region in space, X � Rd , where d = 1, 2 or 3. The
boundary of X is supposed to be sufficiently smooth, and is denoted by C = oX, with outward unit normal
n. Further, let C ¼ Cg [ Cs ¼ Cq [ Cr, where Cg \ Cs = Cq \ Cr = ;. Mass transport in the mixture is governed
by a parabolic partial differential supplemented by initial and boundary conditions. In strong form we have
the following problem: find c : X� ½0; T � ! R such that
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c;t ¼ r � ðMrðlc � kr2cÞÞ in X� ð0; T Þ; ð1Þ
c ¼ g on Cg � ð0; T Þ; ð2Þ
Mkrc � n ¼ q on Cq � ð0; T Þ; ð3Þ
Mkr2c ¼ r on Cr � ð0; T Þ; ð4Þ
Mrðlc � kr2cÞ � n ¼ s on Cs � ð0; T Þ; ð5Þ
cðx; 0Þ ¼ c0ðxÞ in X: ð6Þ
Here, M > 0 is known as the mobility, lc is the chemical potential of a regular solution in the absence of phase
interfaces (a uniform solution, which may be interpreted as a solution in which c is spatially constant) and is a
function of c, and k > 0 is a constant that determines the magnitude of interface free-energy in the presence of
a given concentration gradient. Eqs. (2) and (3) are boundary conditions on the concentration and its normal
derivative, respectively. The less familiar Eq. (4) is effectively a boundary condition on a component of the
total potential, as will be clarified below, while Eq. (5) is the flux boundary condition.

While the boundary conditions have been presented in a general form, the condition $c Æ n = 0 on C was
assumed in the original derivation of the Cahn–Hilliard equation. To be consistent with the thermodynamic
derivation of the equation, Cq = C and q = 0 is required.

In the following sections, two cases for the scalar M are considered. In the first, M = D where D is the dif-
fusivity and is constant. In the second case, the mobility is dependent on the concentration. The commonly
adopted relationship
M ¼ Dcð1� cÞ; ð7Þ

in which D is again constant, is used. This relationship restricts diffusion processes primarily to the interfacial
zones, and is commonly known as ‘degenerate mobility’.
Remarks

(1) Eqs. (2)–(5) are the appropriate boundary conditions only for k > 0. If k = 0, only (2) and (5) are of
relevance.

(2) The problem as posed is nonlinear due to the composition-dependent mobility M, and the nonlinearity
in chemical potential lc.
The Cahn–Hilliard equation is derived by considering additive contributions to the total free-energy W
from a chemical term Wc and a surface free-energy term Ws. A potential lc is given by the functional derivative
of the chemical free-energy with respect to the concentration, DcW

c, and it is assumed that diffusion is driven
by gradients in the total potential. Here, the chemical free-energy of a solution is considered to be given by [1]
Wc ¼ NkT ðc ln cþ ð1� cÞ lnð1� cÞÞ þ Nxcð1� cÞ; ð8Þ

where N is the number of molecules per unit volume, k is Boltzmann’s constant, T is the absolute temperature
and x is a parameter related to the mixing enthalpy that determines the shape of Wc. For x > 2kT, the chem-
ical free energy is non-convex, with two wells which drives phase segregation into the two binodal points. For
x 6 2kT it has a single well and admits a single phase only. A typical function for the chemical free-energy for
the non-convex case is illustrated in Fig. 1.

According to the original model of Cahn and Hilliard [1], the surface free energy is given by
Ws ¼ 1

2
krc � rc: ð9Þ
It is this term which leads to the fourth-order derivatives in the Cahn–Hilliard equation. Details of the deri-
vation of the standard Cahn–Hilliard equation can be found in various references [25,26].

The parameters for the numerical examples in Section 5 will be given in dimensionless form. Consider there-
fore a length scale L0, which is representative of the size of the domain X, and time scale T 0 ¼ L4

0=Dk. Relevant
dimensionless quantities, denoted with an asterisk, are given by:
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Fig. 1. Non-convex chemical free-energy Wc as a function of concentration.
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tH ¼ t=T 0; xH ¼ x=L0; lH

c ¼ lcL
2
0=k: ð10Þ
Using these, the dimensionless counterpart of Eq. (1) is given by:
c;tH ¼ rH � brHðlH

c �rH2cÞ; ð11Þ
where b is a dimensionless term reflecting the nature of the mobility. In the case of constant mobility b = 1,
and in case of degenerate mobility b = c(1 � c).

3. Galerkin finite element formulations

In this section, the proposed discontinuous Galerkin formulation is presented. For the later comparison of
numerical results, a conventional mixed formulation is also summarised. To this end, we introduce a partition
of X into nel open sets, Xe, each with boundary Ce = oXe:
X ¼
[nel

e¼1

Xe; such that
\nel

e¼1

Xe ¼ ;: ð12Þ
We will also use the following terminology in the discontinuous Galerkin formulation:

The union of inter-element boundaries and the boundary Cq:
eC ¼ [nel

e¼1

Ce

 !-
Cr; ð13Þ
which can also be expressed as
eC ¼[ni

i¼1

Ci: ð14Þ
where Ci is an element edge, excluding those which are part of Cr, and ni is the number of edges which are not
part of Cr.

The union of element interiors:
eX ¼[nel

e¼1

Xe: ð15Þ

The jump operator on a vector:

sat ¼ a1 � n1 þ a2 � n2; on eC n C; ð16Þ
sat ¼ a � n on C; ð17Þ
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where the subscripts refer to the face of the element on either side of each inter-element boundary, and n is the
unit outward normal to an element boundary.

The average operator:
hai ¼ 1

2
ða1 þ a2Þ eC n C; ð18Þ

hai ¼ a on C: ð19Þ
where again the subscripts refer to the face of the element on either side of each inter-element boundary. The
jump and average operators operate at boundaries only.

We also make repeated use of the standard notation for L2-inner products:
ðu; vÞW ¼
Z

W
uvdW: ð20Þ
3.1. Discontinuous Galerkin formulation

Let ch 2 Sh be the finite dimensional approximation of the concentration field, where
Sh ¼ fchjch 2 H 1ðXÞ; ch 2 P kðXeÞ 8e; ch ¼ g on Cgg; ð21Þ

with Pk(Xe) being the space of the standard polynomial finite element shape functions on element Xe where k is
the polynomial order. It has been assumed implicitly that g comes from a space such that it can be represented
exactly by the finite element basis functions. Let wh 2 Vh be the finite dimensional weighting function, where
V h ¼ fwhjwh 2 H 1ðXÞ; wh 2 P kðXeÞ 8e; wh ¼ 0 on Cgg: ð22Þ

Note that these function spaces possess less regularity than would be required in a conventional formulation
for the Cahn–Hilliard equation. A conventional Galerkin formulation would seek solutions in a subspace of
H2(X), rather than in subspaces of H1(X). An approximate solution to the Cahn–Hilliard equation then in-
volves: find ch 2 Sh · [0,T] such that
ðwh; ch
;tÞX þ ðrwh;Mhrlh

cÞX þ ðr2wh;Mhkr2chÞ~X þ ðrwh; ðrMhÞkr2chÞ~X � ðsrwht; hMhkr2chiÞ~C

� hMhkr2whi; srcht
� �

~C
þ a
hhei

srwht;Mhksrcht

� �
~C

¼ ðwh; sÞCs
þ ðrwh � n; rÞCr

þ a
he
rwh � n; q

� �
Cq

� ðr2wh; qÞCq
8wh 2 V h; ð23Þ

ðwh; chðx; 0ÞÞX ¼ ðwh; c0ðxÞÞX 8wh 2 V h; ð24Þ
where a is a dimensionless parameter and he is a measure of the size of element e. Apart from the boundary
condition on the concentration (2) that is built into trial and weighting function spaces, all other boundary
conditions are weakly imposed. In particular, the boundary condition on the normal derivative of the concen-
tration, Mk$c Æ n, has been imposed in a fashion analogous to Nitsche’s method [19]. The same concept has
been applied to internal element boundaries to ensure weak continuity of Mhk$ch Æ n, inspired by the interior
penalty method for second-order equations [17] and the later work of Engel et al. [22] for fourth-order elliptic
equations. The last term on the left hand-side is the so-called interior penalty term, and is essential for stabil-
ity. Various terms in the weak form ensure consistency with the governing equation and boundary conditions,
which is elaborated in Appendix A.1. The need for the stabilising term is elucidated in Appendix A.2 through
an existence analysis of the proposed discontinuous Galerkin formulation. Also worth noting is that the pre-
sented weak form holds for non-constant M. In particular, the fourth term on the left hand-side of Eq. (23)
vanishes for constant mobility, $M = 0. An a priori error estimate for the method is developed in Appendix
A.3, which shows in a particular norm that the convergence rate is unaffected by a, although increasing a will
have a detrimental effect on the magnitude of the error.
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3.2. Mixed finite element formulation

To develop a conventional finite element formulation, consider replacing the fourth-order equation in Eq.
(1) by two second-order equations,
c;t ¼ r � ðMrðlc � jÞÞ; ð25Þ
j ¼ kr2c: ð26Þ
For the mixed formulation it is convenient to redefine the boundary condition on Cq (Eq. (3)) such that
krc � n ¼ q on Cq � ð0; T Þ: ð27Þ
Then, considering the function spaces:
Sh ¼ fchjch 2 H 1ðXÞ; ch 2 P kðXeÞ8e; ch ¼ g on Cgg; ð28Þ
V h ¼ fwhjwh 2 H 1ðXÞ;wh 2 P kðXeÞ8e;wh ¼ 0 on Cgg; ð29Þ
P h ¼ fjhjjh 2 H 1ðXÞ; jh 2 P kðXeÞ8e; jh ¼ r on Crg; ð30Þ
Qh ¼ fvhjvh 2 H 1ðXÞ; vh 2 P kðXeÞ8e; vh ¼ 0 on Crg; ð31Þ
where it has been assumed that the boundary conditions g and r can be represented exactly by the finite
element basis. Following the standard procedure of integration by parts, and insertion of the Neumann
boundary conditions, the Galerkin problem reads: find ch 2 Sh · [0, T] and jh 2 Ph such that
ðwh; ch
;tÞX þ ðrwh;Mhrðlh

c � jhÞÞX ¼ ðwh; sÞCs
8wh 2 V h; ð32Þ

ðvh; jhÞX þ ðrvh; krchÞX ¼ ðvh; qÞCq
8vh 2 Qh; ð33Þ

ðwh; cðx; 0ÞÞX ¼ ðwh; c0ðxÞÞX 8wh 2 V h: ð34Þ
4. Numerical implementation of the discontinuous Galerkin and mixed finite element formulations

The proposed discontinuous Galerkin method entails in addition to the usual integration over element vol-
umes, integration over inter-element boundaries. While this step is not standard in continuous Galerkin finite
element codes, the structure of the necessary code is not dissimilar to the usual loop over element volumes.
Numerical implementation of the mixed formulation is identical to the usual implementation for mixed finite
element problems.

The proposed discontinuous Galerkin formulation involves an element length scale he which is related to
the element size. In all simulations, he is computed for each element based on the element volume. In the exam-
ples presented in Section 5, for triangular elements he ¼

ffiffiffiffiffiffiffi
2Ae

p
, where Ae is the element area, and for quadri-

lateral elements he ¼
ffiffiffiffiffi
Ae
p

, where Ae is again the element area.
All examples are marched in time using the Crank–Nicolson scheme. At this stage, no adaptive time step-

ping has been used. The use of adaptive time stepping is potentially very attractive since the concentration field
typically evolves rapidly at the start of a simulation before slowing, and then speeding up intermittently as
‘bubbles’ diffuse and vanish. In order to solve the nonlinear equations, the proposed formulation has been lin-
earised consistently and a Newton–Raphson scheme has been used.

5. Numerical examples and comparison of formulations

5.1. Discretisation comparison

The proposed formulation is first examined for a series of simulations on a unit square X = (�0.5, 0.5) ·
(�0.5, 0.5) for a range of discretisations and element types, with the proposed discontinuous Galerkin method
compared to the standard mixed formulation. Boundary conditions are specified on Cq = Cs = C (see Section
2), with q = s = 0 (see Eqs. (4) and (5)). Considering a square subdomain X1 inside the unit square,
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X1 = [�0.2, 0.2] · [�0.2, 0.2], and its complement X2, X = X1 [ X2, the initial conditions for this test are given
by
cðx; 0Þ ¼
0:71 x 2 X1;

0:69 x 2 X2:

�
ð35Þ
These initial conditions are illustrated in Fig. 2. Model parameters are: x/kT = 3, NkTL2
0=k ¼ 600, b = 1 (con-

stant mobility), a = 5 and Dt* = 2 · 10�7.
Three meshes using the the discontinuous Galerkin formulation and one using the mixed formulation are

tested and the concentration contours at t* = 8 · 10�5 are shown in Fig. 3. The structured mesh of six-noded
triangular elements (T6) is composed of 11250 elements, the unstructured mesh of six-noded triangular
elements is composed of 10283 elements, the structured mesh of nine-noded quadrilateral elements (Q9) is
composed of 10000 elements and the mixed formulation uses 6400 four-noded quadrilateral elements
(Q4Q4), with both ch and jh using bilinear shape functions. Clearly, the computed result is insensitive to
the nature of the spatial discretisation.

5.2. Influence of the penalty parameter a

The same test is now used to study the influence of the penalty parameter a for the discontinuous Galerkin
formulation. In a multi-dimensional setting the influence of a cannot be considered in isolation due to the pres-
ence of the element-dependent length scale he, the definition of which is not unique. Ideally, a should be as low
as possible while still maintaining stability, since error analysis indicates that large values of a have a detrimen-
tal effect on accuracy (see Appendix A.3 and Brenner and Sung [27]). Experience indicates that a = 5 for the
tested elements ensures stability. For a < 5, the likelihood of the model being unstable becomes high. The
appropriate value of a is dependent on the element type.

Fig. 4 shows the concentration contours at t* = 8 · 10�5 for the structured T6 mesh and various values of a.
For moderate values of a, there is no discernible effect on the results. For the case a = 50, a slight bias can be
observed in the direction of the triangle diagonals (bottom left-hand side to top right-hand side). Such effects
may be observed for large values of a on meshes with a strong, anisotropic bias. However, the effects reduce
with mesh refinement. The concentration contours are shown in Fig. 5 for the unstructured T6 mesh with
a = 5 and a = 50. In this case, there is no discernible difference.

The presence of the numerical parameter a, and mesh-dependent length scale he, is less than desirable. For-
tunately, by drawing on developments in discontinuous Galerkin methods for second-order elliptic equations
it is likely that a more sophisticated stabilisation technique will avoid this need and lead to an unconditionally
stable method (in the linearised case). This aspect, which is an area of ongoing research, does however often
come at the cost of extra computational effort.
0.4

0.4

1

1

c1

c2

Fig. 2. Initial conditions where c1 = 0.71 and c2 = 0.69.



Fig. 3. Finite element meshes (left) and concentration contours (right) for: (a) structured T6 mesh, (b) unstructured T6 mesh,
(c) structured Q9 mesh and (d) Q4Q4 mixed method.
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5.3. Evolution from a randomly perturbed initial condition

The evolution of the concentration field from a randomly perturbed initial condition is now examined on
the unit square domain. For this test, the following parameters have been adopted: x/kT = 3, NkTL2

0=k ¼
3000, b = c(1 � c) (degenerate mobility), a = 5 and Dt* = 2 · 10�8. For the initial conditions, the average



Fig. 4. Influence of the penalty parameter a for the structured T6 mesh.

Fig. 5. Influence of the penalty parameter a for the unstructured T6 mesh.
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concentration is equal to 0.63, with random fluctuations of zero mean and no fluctuation greater than 0.05.
For the sake of comparison, the simulations have been performed for both the discontinuous Galerkin method
and the mixed Galerkin formulation. For the discontinuous Galerkin technique, the unstructured T6 mesh
shown in Fig. 3(b) has been used, and for the mixed method, the Q4Q4 mesh shown in Fig. 3(d) has been
used.

Figs. 6 and 7 show the evolution of the concentration field for the discontinuous and the mixed Galerkin
formulations, respectively. Although starting from different initial random perturbations due to the different
meshes and basis functions (the initial conditions are identical in the statistical sense), both methods show sim-
ilarities in capturing the characteristic features of the Cahn–Hilliard equation. The first time snapshots in the
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two series differ slightly due to the different initial random perturbations. However, already at tw = 2 · 10�6,
similar patterns start to develop. The concentration evolution can basically be categorised in two phases: the
first phase, which is predominantly governed by spinodal decomposition and phase separation, and a second
phase which is characterised by grain coarsening.

During the first phase, roughly corresponding to the first four figures of each series, changes in concentra-
tion are driven primarily by the minimisation of the local chemical energy Wc. This period is basically termi-
nated as soon as the local concentration is driven to either value of the two binodal points. The two different
discretisation techniques render statistically similar patterns. Approximately from tw = 8 · 10�6 onwards,
local changes in concentrations are primarily governed by the surface free energy Ws. In order to minimise
its contribution, the generated patterns cluster and grains tend to coarsen. This Ostwald ripening takes place
on a much longer time scale. Accordingly, grain coarsening is a very slow process and concentrations do not
change rapidly between tw = 8 · 10�6 and tw = 2.56 · 10�4. Again, Figs. 6 and 7 show a statistically similar
response as the grain sizes and the number of grains are of the same order of magnitude for each depicted time
Fig. 6. Evolution of concentration contours from a randomly perturbed initial condition using the discontinuous Galerkin method.



Fig. 7. Evolution of concentration contours from a randomly perturbed initial condition using a mixed finite element method.

(a) (b)

Fig. 8. Contours at c = 0.5 and tw = 2.56 · 10�4 for the (a) discontinuous Galerkin and (b) mixed formulation.
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step. To emphasise this, for the two methods a plot with a single contour at c = 0.5 is presented in Fig. 8 at
tw = 2.56 · 10�4. The total length of the contours for the two formulations is very close: 5.26 for the discon-
tinuous Galerkin formulation and 5.00 for the mixed formulation.
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6. Conclusions

The formulation presented in this paper allows for the solution of the Cahn–Hilliard equation in primal
form using simple C0 finite element basis functions. The variational problem has been shown to be consistent
with the Cahn–Hilliard equation, stability is assured for a sufficiently large penalty parameter, and an a priori
estimate is provided for the error in an energy-type norm.

While not demonstrated for the Cahn–Hilliard equation in this paper, the proposed formulation represents
a promising avenue for development of efficient linear solvers methods for the Cahn–Hilliard equation. Recent
developments in multigrid methods for this class of problem [28] hold significant promise. This is of particular
relevance given the computationally intensive nature of this problem, and effective iterative linear solvers will
be invaluable tools for well-resolved three-dimensional simulations.
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Appendix A. Analysis of the discontinuous Galerkin formulation

A.1. Consistency: Euler–Lagrange equations

The repeated application of integration by parts on Eq. (23) leads to:
ðwh; ch
;tÞX � ðwh;r �Mhrðlh

c � kr2chÞÞ~X þ ðwh; sMhrðlh
c � kr2chÞtÞ~CnCq

þ ðhrwhi; sMhkr2chtÞ~CnCq

þ ð a
hhei

srwht� hr2whi; sMhkrchtÞ~CnCq
þ ðwh;Mhrðlh

c � kr2chÞ � n� sÞCs
þ ðrwh � n;Mhkr2ch � rÞCr

þ ð a
hhei
rwh � n�r2wh;Mhkrch � n� qÞCq

¼ 0; ðA:1Þ
where we have used
ðr � ðMrwÞ; ðkr2cÞÞX ¼ ðrM � rw; ðkr2cÞÞX þ ðMr2w; ðkr2cÞÞX: ðA:2Þ

These results, together with Eq. (24), imply the weak imposition of the following equations and continuity
conditions
ch
;t ¼ r � ðMhrðlh

c � kr2chÞÞ in eX � ð0; T Þ; ðA:3Þ

sMhrcht ¼ 0 on eC n Cq � ð0; T Þ; ðA:4Þ

sMhkr2cht ¼ 0 on eC n Cq � ð0; T Þ; ðA:5Þ

sMhrðlh
c � kr2chÞt ¼ 0 on eC n Cq � ð0; T Þ; ðA:6Þ

Mhkrch � n ¼ q on Cq � ð0; T Þ; ðA:7Þ
Mhkr2ch ¼ r on Cr � ð0; T Þ; ðA:8Þ
Mhrðlh

c � kr2chÞ � n ¼ s on Cs � ð0; T Þ; ðA:9Þ
showing that the proposed formulation is consistent with the Cahn–Hilliard equation and associated bound-
ary conditions. This process illustrates the roles played by different non-standard terms in the weak formula-
tion in implying the appropriate Euler–Lagrange equations.
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A.2. Existence of a solution: time continuous case

The need for the penalty term in order to stabilise the discontinuous Galerkin formulation is justified in this
section. The standard L2 norm over X is denoted ici, and when implying integration over another domain, the
domain is given, for example,
kr2ck2
~X ¼

Z
~X
ðr2cÞ2 dX: ðA:10Þ
To prove existence of a solution to the discontinuous Galerkin model, analysis techniques commonly used to
prove existence of weak solutions to the Cahn–Hilliard equation are followed (see, for example, Elliott and
Zheng [14]) and extended where necessary for the discontinuous Galerkin case. The goal is to show that
the concentration field in the proposed formulation is bounded in time, and in terms of a norm on V,
kckV ¼ krck þ kr2ck~X þ
Xni

i

1

hhei
ksrctkCi

; ðA:11Þ
where ni is the number of element boundaries, which is an energy-like norm. Note that iciV = 0 only for the
trivial case of constant c. The use of a logarithmic free-energy complicates the analysis considerably due the
lack of continuity on the real line. Furthermore, concentration dependent mobility introduces considerable
difficulties which have complicated past mathematical analysis of the Cahn–Hilliard equation. At this point,
we restrict ourselves to the case of constant mobility, and for simplicity a continuous free energy, as is often
used in analysis. Analysis for the case of logarithmic free energy can be found in Copetti and Elliot [29] and
Barrett and Blowey [30], and for the case of concentration-dependent mobility in Elliott and Garcke [31] and
Barrett et al. [7].

In examining the existence of a solution, a number of inequalities will prove useful and are presented first.
The definition of various constants, denoted C, may vary at each appearance. A subscript ‘e’ is used to denote
element-wise constants. From integration by parts and the application of the Cauchy–Schwarz inequality and
Young’s inequality, it is clear that for all u, v 2 Vh (Vh has been defined in Section 3.1):
ðru;rvÞX ¼ �ðu;r2vÞ~X þ
Xni

i

ðu; srvtÞCi
6 jðu;r2vÞ~Xj þ

Xni

i

jðu; srvtÞCi
j

6 kukkr2vk~X þ
Xni

i

ðkukCi
ksrvtkCi

Þ

6 �0kuk2 þ 1

4�0

kr2vk2
~X þ

Xni

i

h�1;eikuk2
Ci
þ 1

4

Xni

i

1

h�1;ei
ksrvtk2

Ci
; ðA:12Þ
where �0, �1,e > 0. The term �1,e may vary for each element. Considering the discrete trace inequality (see [18,
Eq. (2.4)]),
kuk2
oXe
6

Ce

he
kuk2

Xe
þ Cehekruk2

Xe
8u 2 H 1ðXeÞ; ðA:13Þ
and the inverse estimate [32, Eq. (4.5.7)]
kruk2
Xe
6

Ce

h2
e

kuk2
Xe
8u 2 H 1ðXeÞ; ðA:14Þ
it is possible to bound the term
Pni

i h�1;eikuk2
Ci

in terms of a norm over element volumes,
Xni

i

h�1;eikuk2
Ci
6

Xne

e

�1;e
Ce

he
kuk2

Xe
; ðA:15Þ
where ne is the number of elements. Using the above result in combination with Eq. (A.12)
kruk2
6 2�0kuk2 þ 1

4�0

kr2uk2
~X þ

1

4�0

Xni

i

1

hhe=Cei
ksrutk2

Ci
: ðA:16Þ
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Another useful result involves the term jðhr2ui; srvtÞ~Cj. Using the above inequalities, it is possible to show
that
jðhr2ui; srvtÞ~Cj 6
1

2

Xne

e

�2;eCe

he
kr2uk2

Xe
þ 1

2

Xni

i

1

h�2;ei
ksrvtk2

Ci
; ðA:17Þ
�2,e > 0. This result compares to Engel et al. [22, Eq. (161)]. These results will be important in demonstrating
existence of a solution for the proposed discontinuous Galerkin scheme.

For the boundary conditions q = s = 0 with Cq = Cs = C and M = 1, setting wh = ch in Eq. (23) leads to
1

2

d

dt
kchk2 þ ðrch; l0hc rchÞX þ kkr2chk2

~X � 2kðsrcht; hr2chiÞ~C þ ak
Xni

i

1

hhei
ksrchtk2

Ci
¼ 0; ðA:18Þ
where l0c ¼ dlc=dc. Considering the condition on the chemical free-energy
l0c P �b0; b0 > 0; ðA:19Þ

which is satisfied by the commonly adopted logarithmic (see Eq. (8)) and quartic free-energy models, leads to
the result
�ðrch; l0hc rchÞX 6 b0krchk2 8ch 2 V h: ðA:20Þ

Therefore, from Eq. (A.18),
1

2

d

dt
kchk2 þ 1

2
krchk2 þ kkr2chk2

~X þ ak
Xni

i

1

hhei
ksrchtk2

Ci
6 b1krchk2 þ 2kjðsrcht; hr2chiÞ~Cj; ðA:21Þ
where b1 = b0 + 1/2. The difficulty at this point is presented by the presence of the 2kðsrcht; hr2chiÞ~C term,
which is particular to the discontinuous Galerkin formulation. This term vanishes when seeking solutions
in the standard space which possesses extra regularity and satisfies the Dirichlet boundary conditions
{c 2 H2(X), $c Æ n = 0 on C}. To proceed here, the non-standard term must be bounded by some norm. Using
the results in Eqs. (A.16) and (A.17), Eq. (A.21) becomes
1

2

d

dt
kchk2 þ 1

2
krchk2

X þ kkr2chk2
~X þ ak

Xni

i

1

hhei
ksrchtk2

Ci

6 2b1�0kchk2 þ
Xne

e

b1

4�0

þ k�2;eCe

he

� �
kr2chk2

Xe
þ
Xni

i

b1

4�0hhe=Cei
þ k
h�2;ei

� �
ksrchtk2

Ci
: ðA:22Þ
Defining now �0 ¼ b1=4k�00 and �2;e ¼ �02he=Ce, where �00; �
0
2 > 0, and rearranging the terms in the above equa-

tion and multiplying both sides by a factor two,
d

dt
kchk2 þ krchk2

X þ 2kð1� �00 � �02Þkr2chk2
~X

þ 2k
Xni

i

a
hhei
� �00
hhe=Cei

� 1

�02hhe=Cei

� �
ksrchtk2

Ci
6

b2
1

k�00
kchk2

: ðA:23Þ
Consider �00 to be very small (approaching zero) and �02 < 1� �00. In the limit as �00 approaches zero, if a > C,
where C = max(Ce) and Ce is defined by Eq. (A.15), then all terms on the LHS are positive. However, the
terms on the RHS will be proportional to 1=�00. For �00 ¼ 1=4 and �01 ¼ 1=2, if
a > C 4þ 1

4

� �
; ðA:24Þ
then all terms on the LHS are positive and the necessary bounds can be developed from Gronwall inequalities,
as is done in standard analysis of the Cahn–Hilliard equation. For �00 ¼ 1=4 and �01 ¼ 1=2, using Gronwall’s
inequality, for 0 6 t 6 T it holds that
kchðtÞk2
6 kch

0k
2e4b2

1
T=k; ðA:25Þ
which implies that
kchk2
L1ð0;T ;L2ðXÞÞ ¼ max

06t6T
kchðtÞk2

6 CTkch
0k

2
; ðA:26Þ



874 G.N. Wells et al. / Journal of Computational Physics 218 (2006) 860–877
where CT depends only on b1, T and k. Hence, the concentration field is bounded for all t 6 T in terms of the
initial conditions. Integrating Eq. (A.23) with respect to time from t = 0 to t = T,
Z T

0

krchk2 dt 6
4b2

1

k

Z T

0

kck2 dt; ðA:27Þ
which when considering Eq. (A.26) implies that
Z T

0

krchk2 dt 6 Ckch
0k

2
: ðA:28Þ
Repeating this procedure for each of the kr2chk~X and ksrchtk~C terms on the LHS of Eq. (A.23) leads to the
result
kchk2
L2ð0;T ;V ðXÞÞ ¼

Z T

0

kchk2
V dt 6 CTkch

0k
2
: ðA:29Þ
This is sufficient to prove existence of a solution in the defined space, conditional upon a sufficiently large a
satisfying Eq. (A.24).

A.3. Error estimate for the semi-discrete problem

Bounds for the error in an energy-like norm are presented in this section under the assumptions adopted in
the previous section in examining stability. Consider the decomposition of the error e such that
e ¼ c� ch ¼ ðc� �cÞ þ ð�c� chÞ ¼ gþ eh; ðA:30Þ
where �c 2 V h is the nodal interpolant of the exact solution, g is the interpolation error, g ¼ c� �c, and
eh ¼ �c� ch. Given that ch is the solution to Eq. (23) and that the proposed formulation is consistent,
ðwh; eh
;tÞX þ ðr2wh; kr2ehÞ~X þ

Xni

i

ka
hhei
ðsrwht; srehtÞCi

6 jðwh; g;tÞXj þ jðrwh;rlcðcÞ � rlcðchÞÞXj þ jðr2wh; kr2gÞ~Xj þ jðsrwht; khr2ehiÞ~Cj

þ jðhr2whi; ksrehtÞ~Cj þ jðsrwht; khr2giÞ~Cj þ jðhr2whi; ksrgtÞ~Cj þ
Xni

i

ka
hhei
jðsrwht; srgtÞCi

j:

ðA:31Þ
Setting wh = eh and adding i$ehi2 to both sides of the above equation
1

2

d

dt
kehk2 þ krehk2 þ kkr2ehk2

~X þ
Xni

i

ka
hhei
ksrehtk2

Ci

6 jðeh; g;tÞXj þ krehk2 þ jðreh;rlcðcÞ � rlcðchÞÞXj þ jðr2eh; kr2gÞ~Xj

þ 2jðsreht; khr2ehiÞ~Cj þ jðsreht; khr2giÞ~Cj þ jðhr2ehi; ksrgtÞ~Cj þ
Xni

i

ka
hhei
jðsreht; srgtÞCi

j:

ðA:32Þ
A bound is now sought for each term on the RHS of the above equation. It is straightforward to show that
jðeh; g;tÞXj 6
1

2
kehk2 þ 1

2
kg;tk

2
: ðA:33Þ
The second term on the RHS of Eq. (A.32) requires careful attention. Assuming that the gradient of lc is Lips-
chitz continuous,
rlc cð Þ � rlc ch
� ��� �� 6 C c� ch

�� ��; ðA:34Þ
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it holds that
jðreh;rlcðcÞ � rlcðchÞÞXj 6 krehkkrlcðcÞ � rlcðchÞk 6 Ckrehkkc� chk ¼ Ckrehkkeh þ gk

6 Ckrehkðkehk þ kgkÞ 6 1

2
krehk2 þ C2kehk2 þ C2kgk2

: ðA:35Þ
From Eq. (A.17), it holds that
2jðsreht; khr2ehiÞ~Xj 6
k
2
kr2ehk2

Xe
þ 2k

Xni

i

1

hhe=Cei
ksrehtk2

Ci
ðA:36Þ
and in the same vein,
jðsreht; khr2giÞ~Cj 6 4kkr2gk2
~X þ

k
16

Xni

i

1

hhe=Cei
ksrehtk2

Ci
: ðA:37Þ
It can be shown that,
jðhr2ehi; ksrgtÞ~Cj 6
k
8
kr2ehk2

~X þ 2k
Xni

i

1

hhe=Cei
ksrgtk2

Ci
6

k
8
kr2ehk2

~X þ Ck
Xne

e

1

h2
e

krgk2
Xe
; ðA:38Þ
where use has been made of
ksrutk2
Ci
6 2kru1 � n1k2

Ci
þ 2kru2 � n2k2

Ci
; ðA:39Þ
in which the subscripts denote sides of the element interface (see Section 3), the trace inequality (see [18, Eq.
(2.5)])
kru � nk2
oXe
6

Ce

he
kruk2

Xe
þ Cehekr2uk2

Xe
8u 2 H 2ðXeÞ; ðA:40Þ
and the inverse estimate in Eq. (A.14). Considering the term related to the penalty,
ka
Xni

i

1

hhei
jðsreht; srgtÞCi

j 6 ak
2

Xni

i

1

hhei
ksrehtk2

Ci
þ ak

2

Xni

i

1

hhei
ksrgtk2

Ci

6
ak
2

Xni

i

1

hhei
ksrehtk2

Ci
þ Cak

Xne

e

1

h2
e

krgk2
Xe
: ðA:41Þ
From Eq. (A.16), the term i$ehi2 is bounded by
krehk2
6

8

k
kehk2 þ k

16
kr2ehk2

Xe
þ k

16

Xni

i

1

hhe=Cei
ksrehtk2

Ci
: ðA:42Þ
It is trivial to show that
r2eh; kr2g
� �

~X

		 		 6 k
16
kr2ehk2

~X þ 4kkr2gk2
~X: ðA:43Þ
Inserting these bounds into Eq. (A.32) and using Eq. (A.14), for a that satisfies the stability condition,
d

dt
kehk2 þ krehk2 þ kkr2ehk2 þ CðaÞk

Xni

i

1

hhei
ksrehtk2

Ci

6 C 1þ 1

k

� �
kehk2 þ kg;tk

2 þ kgk2 þ kð1þ aÞ
Xne

e

1

h2
e

krgk2
Xe

 !
; ðA:44Þ
where C(a) increases with increasing a.
Considering the standard interpolation estimates
kgk2
Xe
6 Ch2ðkþ1Þ

e jcj2Hkþ1ðXeÞ; ðA:45Þ
krgk2

Xe
6 Ch2k

e jcj
2
Hkþ1ðXeÞ; ðA:46Þ
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and assuming that the error in the initial conditions are such that
kchð0Þ � cð0Þk 6 Chkþ1; ðA:47Þ

then by integrating Eq. (A.44) with respect to time, applying Gronwall’s inequality (knowing that both c and
ch are bounded),
kehk2
X þ

Z T

0

krehk2
X dt þ

Z T

0

kkr2ehk2
~X dt þ

Z T

0

ka
Xni

i

1

hhei
ksretk2

Ci
dt 6 CT ðcÞh2ðk�1Þ; ðA:48Þ
where CT(c) is dependent on c. Also, CT(c) increases with increasing a. Through application of the triangle
inequality,
kek2
X þ

Z T

0

krek2
X dt þ

Z T

0

kkr2ek2
~X dt þ

Z T

0

ka
Xni

i

1

hhei
ksretk2

Ci
dt 6 CT ðcÞh2ðk�1Þ: ðA:49Þ
When considering the norm
kek2
X þ

Z T

0

krek2
X dt þ

Z T

0

kr2ek2
~X dt þ

Z T

0

Xni

i

1

hhei
ksretk2

Ci
dt 6 CT ðcÞh2ðk�1Þ; ðA:50Þ
given that CT(c) increases with increasing a it is clear that a large a has a detrimental effect on the accuracy. It
does not however affect the rate of convergence.
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